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Introduction

0.1 The motivation for this paper is a problem in local differential
geometry, sometimes called the transitive equivalence problem. This problem
will be illustrated with a typical example: Let M be a Riemannian manifold.
Take the curvature tensor of M and its covariant derivatives of all orders and
combine them by taking their products, contractions, etc. The set of all
tensors obtained this way will include certain tensors of type (0, 0), which
can be regarded as scalar functions on M. Suppose all of these functions are
constant. Question: Is M locally a homogeneous space? The answer due to
Singer [13] is that it is.

The problem above makes sense in a much more general setting. Roughly
speaking, suppose a differential structure of some sort is given on a manifold
and suppose it is impossible to compute differential invariants for it which
distinguish one point of the manifold from another. Is the structure, in some
sense, a locally homogeneous space? For those who are familiar with Spen-
cer’s work on pseudogroup structures, this problem will be given a more
precise formulation : Let I” be a transitive pseudogroup acting on some model
space, and let M be a manifold with an almost I structure given on it. Pro-
blem: When does M admit an underlying I" structure to which the given
almost I” structure corresponds? To take a simple example : If M is an almost
complex manifold, when is there an underlying complex structure, here I’
being the pseudogroup of holomorphic diffeomorphisms of C»? (Cf. [4] and
[15] for definitions.)

It is known that if one is given a transitive analytic pseudogroup I” and a
normal subpseudogroup I, defined by an invariant foliation, one can define
a quotient I'/I", with reasonable properties; this is a theorem of Kuranishi
and Rodrigues [10]. If we are given a pseudogroup and a descending chain
of normal subpseudogroups, the solvability or non-solvability of the problem
proposed above seems to depend only on the nature of the quotients which
occur in this chain. This is rather analogous to the situation which occurs in
Galois theory, where the techniques required to solve an algebraic equation
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depend on the quotients which occur in the Jordan-Hélder decomposition of
the Galois group. This fact makes it worthwhile to try to find a kind of
“Jordan-H&lder decomposition” for pseudogroups. The main theorem of this
paper is a theorem originally conjectured by E. Cartan in the preface to his
Infinite Lie Groups paper [2]. It asserts that every transitive pseudogroup
admits a finite chain of normal subgroups whose quotients are, in Cartan’s
language, ‘‘simple intransitive groups.” Unfortunately, among Cartan’s sim-
ple intransitive groups are omes which are “simple, improprement dit,”” that
is, not simple in the algebraic sense. These groups are abelian and defined
by linear systems of partial differential equations.

The category of pseudogroups is not quite the right setting for Cartan’s
theorem since the main ideas involved have rather little to do with groups or
manifolds. An alternate formulation of the theorem will be given by using a
category of Lie algebras introduced by Sternberg and the author in [3]. For
the transition from algebra to geometry, this paper or Kuranishi’s paper [8]
will be referred to.

Remark. Kobayashi and Nagano in [6] have a decomposition of filtered
Lie algebras which seems to be rather different from ours.

0.2. A brief outline of the main details of the paper will be given:

Let 4 be an arbitrary field. A category of topological vector spaces over 4
is defined as follows: We give 4 itself the discrete topology so that it becomes
a topological field. Let £ be the category of finite dimensional vector spaces
over the field 4. We make this into a category of linear topological spaces by
assigning to each space its discrete topology. We will denote by ¢, the set
of all topological vector spaces which can be obtained as projective limits of
vector spaces belonging to ™.

Next we define a certain family of Lie algebras, which we will denote by
& ,. An object L of ¥, will, by definition, be a Lie algebra whose underly-
ing vector space is a topological vector space belonging to J",, and whose
bracket operation, regarded as a mapping of L X L into L, is continuous.

Let L belong to #,. Our first main result is that the following two proper-
ties are equivalent.

I. L satisfies the descending chain condition on closed ideals.

II. L admits a neighborhood of the origin containing no ideal except {0}.

The Lie algebras which are associated with the transitive pseudogroups
automatically satisfy condition 1I, and hence also satisfy condition I.

To get a Jordan-Hoélder decomposition one needs an ascending chain con-
dition. We will show by examples that the a.c.c. is too much to hope for, but
that there is the following substitute for it. If L belongs to %, then L con-
tains a maximal proper closed ideal. Using this result we will prove our main
theorem.

Theorem 1. Le: L belong to &, and satisfy the d.c.c. on closed ideals.
Then L admits a nested sequence of closed ideals
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0.1) L=I,5L>L--->I,={0

such that, for 0 < i < k, one of the following alternatives holds:

a) [I;/1,,, is non-abelian, and there are no closed ideals of L properly
contained between I; and I, ,.

b) I./1,., is abelian.

Moreover, if two decompositions of type (0.1) are given, the quotients of
type a) which occur are the same in both decompositions.

The proof of this theorem depends on a “Schur’s Lemma” for the adjoint
representation of a simple algebra on itself; this lemma has recently been
very much generalized by Quillen [12].

The last sections of this paper deal with the structure of algebras oc-
curing as quotients of type a). Briefly, these results are as follows:

Let L belong to ¥,, and I a non-abelian minimal closed ideal of L. As-
sume, for simplicity, that the base field 4 is of characteristic zero and alge-
braically closed. One can show that I contains a unique maximal proper closed
ideal of itself. Let us denote by R the quotient of I by this maximal ideal. In
§ 7, we will prove

Theorem 2. There exists a finite number of indeterminants x,, ---, x,
such that I is isomorphic as a Lie algebra to the tensor product:

R® Allx,, - - -, x,]1]

where Allx,, - - -, x,1] is the ring of formal power series in x,, - - -, x,, defined
over the field 4, and the cap over the tensor product symbol indicates that
the tensor product is not the usual algebraic tensor product but an appropriate
topological completion of it.

Because of this theorem, we only have to determine R, in order to know
the structure of I. However, R is simple; and if 4 is of characteristic zero
and algebraically closed, one knows all the simple algebras in ., (cf. [5]).
Therefore, one gets a complete classification of the type a) quotients occuring
in (0.1). The non-algebraically closed case, in particular the case where 4 =
reals is still unsettled; however, a partial picture of what goes on here will be
given in § 7.

0.3. This introduction will conclude with a few remarks about what
happens when these algebraic results are tramslated into theorems about
geometry. Proofs of most of these remarks will appear in a forthcoming paper
on the Kuranishi-Rodrigues theorem.

As was mentioned above, Lie algebras belonging to %, and satisfying the
d.c.c. correspond to tramsitive pseudogroups acting on (real or complex)
manifolds, if 4 is either the real or complex numbers. It turns out that closed
ideals in these algebras correspond to normal subgroups defined by invariant
foliations, which are precisely the subgroups to which the Kuranishi-Rodrigues
theorem applies. The subgroups corresponding to abelian quotients in the
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decomposition of Theorem 1 are abelian pseudogroups whose equations of
definition are homogeneous lirear partial differential equations. The prototype
of such a pseudogroup is the following: Let P*(x,D), a=1,---,N be a
collection of linear partial differential equations on R* with real analytic
coefficients. Let I" consist of all analytic diffeomorphisms of open sets of
R¥**! onto open sets of R*** which are of the form

x—x,
0.2)

y—y+f(x),
where P (x,D)f =0 for « =1, ---, N. In (0.2) x is a k-tuple, y a 1-tuple,

and f any real valued analytic function of x satisfying the indicated system of
equations. This group leaves fixed an invariant one-dimensional foliation, and
on the quotient is just the identity group. Equivalence problems associated
with such groups reduce to problems involving overdetermined systems of
linear partial differential equations of the form P*(x,D)f = g,,a =1, ---, N.

The pseudogroups corresponding to the non-abelian quotients in the de-
composition of Theorem 1 are the groups which Cartan called “simple, pro-
prement dit.” They are simple in the sense that they do not contain proper
normal subgroups of the original pseudogroup. In the complex analytic case,
these groups can be described as follows: Let I be a tranmsitive simple
pseudogroup acting on a manifold M, N any complex analytic manifold, and
= the projection of M x N on N. Let 'y be the pseudogroup consisting of
all local holomorphic diffeomorphisms of M X N which are fiber preserving
and project onto the identity with respect to =, and on the fibers, which are
just copies of M, induce mappings belonging to I". This construction describes
(locally) all pseudogroups corresponding to quotient of type a) in Theorem 1.

A final remark : Among the Lie algebras to which Theorem 1 applies there
will be some which admit no guotients of type b). These correspond to a
family of pseudogroup structures which seem to generalize the multifoliate
structures of Kodaira and Spencer in a rather natural way.

The author would like to express his thanks to Shlomo Sternberg whom he
consulted on many details of this paper, to Michael Crampin who helped him
to reorganize the original draft of the paper, and to Daniel Quilien for advice
about the materialin § 1.

1. Linear compactness

1.1. In this §1 we list a few general facts about topological vector spaces
over discrete fields, which will be needed later on. Most of the results of this
§1 are taken from Lefschetz’s book: Algebraic topology, Amer. Math. Soc.
Coll. Publ., vol. 27, 1942. Also some of this material can be found in Bour-
baki [1] or Zariski-Samuel [16].
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Throughout this §1 the symbol 4 will be used to denote a given field which
will be topologized by giving it the discrete topology.

Let E be a vector space over 4. A subset A of E will be called an affine
set if it is of the form v 4+ F, where v is a fixed element of E and F is a sub-
space. If E is a topological vector space over 4, we will say that the topology
of E is defined by affine sets if one can find a basis for the topology consist-
ing only of affine sets.

Proposition 1.1. Let E be a topological vector space over A whose topo-
logy is defined by affine sets, and F a subspace of E. The following two
statements are equivalent.

a) F is open.

b) F is closed and E[F is discrete.

Proof. If E/F is discrete then F must be open. Suppose conversely that
F is open. Then for all v ¢ E, » 4 F is open; therefore, | v + F is open;

reF
and hence F, which is the complement of this set, is closed. Since F is open
and closed, E/F is discrete.

Definition 1.1. Let E be a topological vector space over 4 whose topology
is defined by affine sets, and A an affine subset of E. A will be said to be
linearly compact if N A, + ¢ for every family {4,} of closed affine subsets
of A with the finite intersection property. If E itself is linearly compact we
will say that E is a linearly compact topological vector space.

Example. Suppose the topology of E is the discrete topology. Then an
affine subset is linearly compact if and only if it is finite dimensional.

The following are a list of basic facts about linearly compact spaces.

Proposition 1.2.

a) If E is linearly compact, and A is a closed affine subset of E, then A is
linearly compact.

b) If A is a linearly compact affine set in E, then A is closed.

c) If d is a continuous linear mapping of E into F and A is a linearly
compact affine subset of E, then d(A) is linearly compact.

d) If{E.}, «ael, is a family of linearly compact spaces, then [| E, is lin-
acl
early compact.

e) If E is the projective limit of linearly compact spaces, then E is line-
arly compact.

All these facts are proved exactly as one proves the analogous theorems
about compact spaces. For details, see Lefschetz’s book.

Corollary 1. If E is linearly compact and F is a closed subspace of E,
then E|F is linearly compact.

Corollary 2. If E is linearly compact, and F, and F, are closed subspaces
of E, then F, + F, is closed.

Proof. The image of F, in E/F, is linearly compact, and hence closed;
so the preimage, which is F, 4 F,, is closed.
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Corollary 3. If E is linearly compact and F is open in E, then E[F is
finite dimensional.

Proof. E|/F is both discrete and linearly compact, and hence finite dimen-
sional.

1.2. Let E be a topological space over 4 whose topology is defined by
affine sets, and E* the topological dual of E. We topologize E* by prescrib-
ing, for a system of neighborhoods of the origin, the collection of all sets of
the form: F+, where F is a linearly compact subspace of E and FZ is its an-
nihilator in E*.

Proposition 1.3. If E is discrete (linearly compact), then E* is linearly
compact (discrete).

Proof. 1If E is linearly compact, then {0} = E! is a neighborhood of the
origin; hence E* is discrete. Suppose conversely that E is discrete. Let {A,},
ael, be a basis for E, and E, the one-dimensional subspace of E generated
by A,. It is easy to see that E* can be identified with the infinite product:
11 E., which by part d) of Proposition 1.2 is linearly compact.

ael

Proposition 1.4. Let E be either discrete or linearly compact. Then there
is a canonical isomorphism: E = E**,

Proof. We will prove the proposition for the case of linearly compact E.
The case of discrete E will be left as an exercise.

An element of E defines a linear functional on E*, which is continuous,
since the topology of E* is discrete. Therefore, there is a natural linear
mapping : £ — E**, which will be shown to be an injection. If ec E, e = 0,
there exists an open set ¢ containing the origin but not E, since E is Haus-
dorff. By Corollary 3 to Proposition 1.2 we can assume that ¢ is a subspace
of codimension 1; hence, there is a continuous linear functional E — 4,
which is equal to 1 on e. This proves the injectivity. The mapping: E — E**
is continuous, because the preimages of open subspaces are open. We will
show that the image has to be dense. Because of the nature of the topology
of E** this amounts to showing that for any set of numbers ¢, ---, ¢, e 4
and any set of linearly independent vectors f,, - - -, f, € E* there exists an e

in E such that f,(¢) =c¢; for i= 1, - - -, n. However, the mapping @: E — (:3 4
which sends e onto <f(e), - - -, f.(€)> has to be surjective if f, -.-, f, are
to be linearly independent in E*; so this condition is always satisfied. By
Proposition 1.2 the image of the mapping of E into E** is closed, and since
the image is dense, the mapping is surjective. Moreover, by Proposition 1.2,
it maps closed subspaces of finite codimension onto closed subspaces of finite
codimension; hence by Corollary 3 it maps open sets onto open sets, and
therefore is a homeomorphism.

Corollary 1. A linearly compact space is the topological dual of a dis-
crete space and visa versa.
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Corollary 2. If a space is linearly compact, then it can be represented as
the product of one dimensional spaces.
Corollary 3. If a space is linearly compact, then it can be represented as
the projective limit of finite dimensional discrete spaces.
Proof. Let E be linearly compact. By Corollary 2, E can be written as a
product of the form [] E, where {E,}, « € I, is a family of one dimensional
acl

discrete spaces. Let & be the directed system of finite subsets of I and for
each Se & let Eg = [] E,. Then E = lim E;.

a€S
Corollary 4. If E is linearly compact, then it is complete in its uniform

topology.

Proof. E is the projective limit of discrete spaces each of which has this
property; hence it also has this property. q.e.d.

Let A be a subset of E. We will denote by 4+ the set of vectors in E*
which annihilate it.

Proposition 1.5. Let E be either discrete or linearly compact, and F a
closed subspace of E. Then FLL = F,

The proof is an immediate consequence of the following:

Lemma. Let E be discrete or linearly compact. Let F be a closed sub-
space of E, and a an element of E not in F. Then there exists an element f
in E* such that f(a) #+ 0 and f|F = 0.

Proof. We will give the proof for the case of linearly compact E. The
case of discrete E will be left as an exercise.

If E is linearly compact, then E/F is linearly compact, and every continu-
ous linear functional on E/F extends to a continuous linear functional on E;
so it is enough to prove the theorem when F = {0}. Suppose the theorem
were false. Then every continuous linear functional on E would have to
vanish on a; hence a would be in the kernel of the mapping: E — E** which
would contradict Proposition 1.4.

Corollary. Let E be linearly compact, and F¢, k=1,2,3, -.. a decreas-

ing chain of closed subspaces of E with A Fr = {0}. Let @ be a neighbor-
k=1

hood of the origin in E. Then there exists an integer k, such that F C 0.
Proof. Let G* = (F¥)* and G = U G*. Then G+ C F*, for all k; so
k=0

G+ = {0}, and G = (J G* = E*. Since ¢ is open and contains the origin we
£=0

can assume it is an open subspace, which means, by Corollary 3 to Proposi-

tion 1.2, that @ is closed and of finite codimension. Since @' must then be

finite dimensional, ¢+ C G* for some large k. Hence, ¢ D F* for the same k.

q.e.d.

The corollary above is a special case of Chevalley’s theorem (cf. Zariski-
Samuel [16]).

Given two linearly compact spaces E and F their usual algebraic tensor
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product would not, in general, be linearly compact. However we can define a
topological tensor product which is linearly compact as follows. We form the
ordinary tensor product E* @ F* and give it the discrete topology. Then we
define the topological tensor product of E and F to be the space (E* ® F*)*,

which will be denoted by E & F.

2. Some Lie algebras with topological properties

2.1. We introduce a special family of Lie algebras which throughout this
sub-section will be designated by the symbol Z,.

Definition 2.1. A Lie algebra L belongs to #, if and only if its underly-
ing vector space is a linearly compact topological vector space over 4, and
the bracket operation, regarded as a mapping of L X L into L, is continuous.

Proposition 2.1. Let L belong to ¥,, and 1 a closed ideal of L. Then
L/I belongs to & ,.

Proof. LTR.

Proposition 2.2. Let L belong to & ,, and O a neighborhood of the origin
in L. Then there exists an open subspace ¢’ contained in O such that (L, (']
cda.

Proof. We can assume that @ is a subspace. Because of the continuity of
the bracket mapping, there exists an open subspace ¢’ contained in @ such
that [@”, @”7] C @. ¢" is of finite codimension; therefore we can find a finite
number of elements x,, ---, x, of L spanning a complement of @’ in L.
Moreover for each x; we can find an open subspace @; such that {(ad x,){0,)

CO. Let 0 =0" (N 0O,).
i=1

Corollary. If @ is an open subspace of L, then there exists an open sub-
algebra of L contained in 0.

Proof. let D0 ={X e C|[L, X] < O}. D,0 is an open subspace of 0,
by Proposition 2.2. We will prove that it is a subalgebra. If X, and X, are in
D, 0, then (X, X,] € 0. Moreover, if Y ¢ L, then (Y, (X, X,I] = [[Y, X.], X,]
+ X, [Y, X,]], and hence is in @. This proves that [ X, X,] is in D,0. g.e.d.

The technique used to prove the corollary to Proposition 2.2 will be useful
later on; therefore we will incorporate it in a definition.

Definition 2.2. ILet L be a Lie algebra, defined over the field 4, and 4 a
subspace of L. We will denote by D4 the set {X € A|[L, X] e 4}.

The following facts will be left for the reader to varify.

Proposition 2.3.

a) If A and B are subspaces of L, then D;(A N\ B) =D;A N D,B.

b) DA is a subalgebra of L.

c) If A is itself a subalgebra of L, then D; A is an ideal of A (NOT nec-
cessarily an ideal of L, however).

d) 1If A is open (closed), DA is open (closed).



JORDAN-HOLDER DECOMPOSITION 321

We can interate the operation: 4 —D,A4. If A is a subspace of L, we will
define inductively: D34 = D;A, DA = D,(DiA4),i=1,2,.... We will
let DyA = (I DiA.

i=1

Proposition 2.4. D35 A is an ideal of L. Moreover, every ideal of L which
is contained in A is contained in D3 A.

Proof. 1If X is an element of L, then [X, DiA] C Di*4 by definition.
Hence [X, Dy A] < D3 A. This proves the first part of the proposition. If I is
an ideal of L contained in A, then [ is contained in D;A since [L, I] C A.
Repeating this argument, we see that I C D,(D;A4), and by induction,
I c DA for all i. _ : )

2.2. This sub-section is mostly devoted to studying the class of Lie alge-
bras given by the following definition.

Definition 2.3. A Lie algebra L belonging to &, has no small ideals, if
there is a neighborhood of the origin in L containing no ideals of L except
the trivial ideal. )

Before discussing this definition (in § 3), we will list a few examples :

Example 1. Let L be a Lie algebra belonging to %, and A an open sub-
space of L. Let L’ = L/DgA. By Proposition 2.4, L’ has no small ideals.

Example 2. Let x,, ---, x; be indeterminants, and F the ring of formal
power series in x;, - - -, X, with coefficients in the field 4. Let L be the Lie
algebra of derivations of F. To define a topology in L we first note that F has
a canonical filtration, F = F* D F* O - - -, where F* is the set of formal power
series whose leading terms are of degree k. Let L* be the subspace of L con-
sisting of derivations which map F into F%*'. It is clear that L* is of finite

codimension in L and that (| L* = {0}. We define a topology on L by letting
k=0

{L*} be a system of neighborhoods of the origin. We will lét the reader verify
that L ¢ &, the main point being to establish the inclusion:

(%) [Ls, L] < L&+t

which shows that the bracket operation is continuous in this topology. The
inclusion ( =) also shows that L* = D%L°; therefore by Proposition 2.4 there
are no non-trivial ideals of L contained in L,. Since L, is open, L has no
small ideals.

Example 3. Let L be the algebra discussed in example 2, and M a closed
subalgebra of L. M will be called transitive if the mapping M — L /L, is sur-
jective. Let M* = M N L*. It is not hard to show that if M is transitive, then
M* = D¥M°. Therefore, by Proposition 2.4, there are no ideals of M con-
tained in M®, and, since M? is open in M, the condition of Definition 2.3 is
satisfied.

Algebras of the type discussed in Example 3 have been studied in detail
in [3]. Using the imbedding theorem proved in [3], together with results



322 VICTOR GUILLEMIN

proved below, one can show that if a Lie algebra has no small ideals, then it
is isomorphic to a Lie algebra of the type discussed in Example 3.

3. Filtrations

3.1. Definition 3.1. Let L be a Lie algebra belonging to %£,. Let
F = {F¥}, —o < i< 4+, be a collection of closed subspaces of L. We
will say that & is a filtration of L if :

a) F¢ o F**!foralli,

b) U Fi=Land A Fi={0},

c) [Ft, Fi] c Fi+ifor all i and j.

The filtration will be called oper if all the F¢ are open.

If {F?}, — o < i< oo, is an open filtration of L, then F* = L for some i,
since all the F* are of finite codimension and their union is equal to L. Let i,
be the largest integer for which F¢ = L. If L is infinite dimensional over 4,
and has no small ideals, then i, must be < —1; for, if not, we would have
[L, F1] = [F°, F'] C F?; hence all the F¢’s would be ideals and, by Chevalley’s
theorem, every neighborhood of the origin would contain some F¢. If i, =
— k, where k > 1, then the filtration of L obtained by setting Fi = F*i,
— o0 < i < oo, has the property that F~! = L.

The remarks above justify our making the following assumption : Given an
open filtration of L we will always assume, unless otherwise stated, that all
the terms in the filtration of degree < — 1 are equal to L and that the term
of degree 0O is unequal to L.

We will show now that a Lie algebra admits an open filtration provided it
has no small ideals. First we need the following notion.

Definition 3.2. Let L be a Lie algebra belonging to % ,, and 4 an open
subalgebra of L. We will say that 4 is fundamental if it contains no ideals of
L except {0}.

If L possesses a fundamental subalgebra, then L has no small ideals. Con-
versely if L has no small ideals, then there is an open neighborhood of the
origin containing no non-trivial ideals of L, and, therefore, by Proposition
2.2, L possesses a fundamental subalgebra.

Let A be a fundamental subalgebra of L. We will define an open filtration
of L as follows: A* =L for k< — 1, A®= A, and A* = D%A for k > 0.
By proposition 2.3, A* is open for all k£, and Proposition 2.4, coupled with
the fact that 4 is fundamental, implies that ﬂ A* = {0}. We let the reader
verify that [4%, A9] € A% for all i and j (proof by induction on Proposition
2.3). Therefore, {4%}, — o < k < o, is an open filtration.

3.2. Let # ={F%, —oo < i< oo, be any filtration of L. The graded
vector space
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Z: Fi / F'L'-I-l
has a natural Lie algebra structure. We will denote this graded Lie algebra
by gr(L, %), and also sometimes write gr(L, &) for Fi/Fi+!,

Suppose now that & is an open filtration of L. Because of our convention
about degrees, gr(L, #)' =0if i < — 1. Let V = gr(L, #)~*. If we bracket
V with itself we land in gr(L, #)2, which is 0. Therefore V is an abelian
subalgebra of gr(L, ).

Let gr(L, #)* be the graded dual space of the vector space gr(L, #). As
a vector space it is the direct sum:

There is a natural linear representation of gr(L, %) on gr(L, #)*, namely
the transpose of the adjoint representation. If we restrict this representation
to the subalgebra V of gr(L, &) we get a representation of V on gr(L, #)*.

Given a representation of a Lie algebra, it has a canonical extension to a
representation of its universal enveloping algebra. However, the universal
enveloping algebra of the abelian algebra V is just the polynomial ring of V,
which we will denote by S(V'). Hence we have established the following result.

Proposition 3.1. The dual gr(L, %)* of the graded Lie algebra associated
with the filtration % has the structure of a graded S(V') module.

Remark. Itis easy to check thatif x ¢ S(V)is of degree i and a e gr(L, #)*
is of degree j, then xa is of degree i + j.

It will be important to know when the module gr(L, 4)* is finitely gener-
ated. The proposition below is a criterion for this.

Proposition 3.2. The following two statements are equivalent :

a) There exists an integer n, such that for all n > ny, F* = D F*1,

b) The module gr(L, &)* is finitely generated as an S(V) module.

Proof. Assume the first statement is true. We will show that gr(L, #)* is
generated by its terms of degree < n,. To show this we have to show that
the mapping

(3.1) vV @ (F"/F”“)* — (Fn+l/Fn+2)*

defined by multiplication by V is surjective if n > n,. This is equivalent to
proving that the dual mapping:

(3.2) Fr#t[Frtt s FrjFosl @ V*

is injective for n > n,. Suppose a is in the kernel of (3.2). This means that
[V,al =0, or, if « is a representative of a in F»*!, that [L, «] < F»*!, which
is equivalent to saying that « is in D F»*'. By assumption, D, F»*' = F?*2 for



324 VICTOR GUILLEMIN

n > ng; so @ is in F7*%, and a = 0. This proves the injectivity of (3.2). The
argument we have just given can be reversed to show that b) implies the in-
jectivity of (3.2) providing n, is chosen to be larger than the degree of any of
the generators of gr(L, #)*, and from the injectivity of (3.2) we can con-
clude, as above, that D, F»*1 = Fn+2,

Definition 3.3. If the filtration % possesses either, and hence both, of
the properties of Proposition 3.2, we will call it admissible.

We have shown above that if L has no small ideals, it possesses an admis-
sible filtration. We will use this fact to prove

Theorem 3.1. Let L belong to #,. Then the following two statements
are equivalent:

a) L has no small ideals.

b) L satisfies the descending chain condition on closed ideals.

We will first prove

Lemma. Let {Fi}, — oo < i< oo, be an open filtration of L. Let I, and
1, be closed ideals of L with I, contained in I,, and

grily, )= 3 L N Fe+ F*)/F, k=12,
the graded ideal in gr(L, &) corresponding to I,. If gr(l,, #) = gr(l,, F),
then I, = I,.

Proof. Suppose, by induction, we have shown that I, ¢ I, + F". We will
show that I, C I, + Fr*!. By assumption gr(I,)" = gr(I,)". Therefore I, N F*
+Far=LNF +F*and,cI + I,N Fr + Fr+* c I, + F™!. By Che-
valley’s theorem F” eventually gets inside of every open neighborhood of the

origin. Since I, is closed, I, = A I, 4+ Fr, and hence I, c I,.
r=0

Proof of Theorem 1.1. That b) implies a) is trivial. To prove that a) im-
plies b), let I, oI, D I, - - - be a descending chain of closed ideals. We want
to show that this chain stabilizes after a finite number of terms. Since each
term in the sequence is closed it is enough, by the lemma, to show that the
sequence gr(l,, #), k =0,1,2, ..., stabilizes after a finite number of terms,
where & is an admissible filtration of L.

Let gr(I,, #)* be the annihilator of gr({,, %) in gr(L, &#)*. This subspace
is stable with respect to the transpose of the adjoint representation; so, in
particular, it is an S(V) submodule of gr(L, #)*. Since (gr{,, F)H)+ =
gr(l,, &), it is enogh to show that the increasing sequence of submodules
gr(l,, #)+ eventually stabilizes. However, gr(L, %)* is finitely generated over
a Noetherian ring; hence every increasing sequence of submodules stabilizes.

4. Primitive and simple Lie algebras, Schur’s lemma

4.1. 1In §6 we will need the following notion:
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Definition 4.1. Let L be a Lie algebra belonging to %,. L is called
primitive if it contains a maximal proper subalgebra which is fundamental.

Proposition 4.1. If L is primitive, then every closed ideal of L except {0}
is of finite codimension.

Proof. Let M be a maximal proper subalgebra which is fundamental, i.e.
contains no ideals of L except {0}. Let I be an ideal of L. Since there are no
subalgebras strictly contained between L and M, I + M = L. Hence the
homomorphism: M — L/I is surjective. Since D¥M is an ideal of M, its
image is an ideal of L/I. But L/I satisfies the descending chain condition;
therefore the sequence I + D¥M stabilizes after a finite number of terms.
A I+ DM = I + DiM for large k. Thus, I is of finite

0

Since [ is closed, I =
k

codimension.

4.2, In this sub-section we prove some elementary results about simple
algebras.

Lemma 4.1. Let L belong to ¥, and satisfy the descending chain condi-
tion, and {F*} be an admissible filtration of L. Then there exists an integer
k, such that for all k > k, the bracket mapping

(F-l/FO) % (Fk/Fk—l) — (Fk—l/Fk)

is surjective.

Proof. Let W = F-*/F°. The dual of the bracket mapping described
above is the mapping of the dual spaces

W X (Ft-[Frys — (F* | Friy% |

The dual frcm of the statement we want to prove is the following: If
ae (F-'/F*) and (w, a) — O for all w ¢ W, then a = 0. By Proposition 3.2,
gr(L, &)* is a finitely generated S(W) module. Hence the submodule of ele-
ments which get annihilated when multiplied by elements of W is finitely
generated over S(W), and since it is in effect a “4’" module, it is finitely gen-
erated over 4, i.e. a finite dimensional vector space over 4. Thus, if & is
large enough the condition (w, a) — 0 for all w ¢ W implies that a = 0.

Lemma 4.2. Let L belong to & ,, {F} be an admissible filtration of L,
and H be a subspace of L complementary to the subspace F°. Then there ex-
ists an integer k, such that [H, F*] = F*-* for k > k,.

Proof. Let k, be as in Lemma 4.1, x,, x,, - -+, x, a basis of H, and g an
element of F*. By Lemma 4.1 we can comstruct a sequence of elements
Grpus by g e Fo**, u=1,2,.--,r=1,2, .-+, n, such that a, = a and

7

Airuyy = Z [xra br,k+u] + Griu -

r=1
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Let b, = 3, b, .4, which converges, since the subspaces F* form a neighbor-
w=1

hood base for the topology of L at the origin, and L is complete in its topo-
logy. By construction,

[x,, b,] .

M

a =

r=1

Proposition 4.2. Ler L belong to ¥, and satisfy the descending chain
condition on closed ideals, and I be a dense ideal of L. Then I = L.

FProof. Let {F*} be an admissible filtration of L. Since I is dense in L, it
contains a subspace H complementary to F°, and therefore contains F* for &
sufficiently large by Lemma 4.2. This means that / is open, and hence closed
and equal to L.

Definition 4.2. Let L be a Lie algebra belonging to .%,. L will be called
algebraically simple if it contains no non-trivial ideals, and topologically sim-
ple if it contains no non-trivial closed ideals.

Proposition 4.3. The above definition is redundant. L is algebraically
simple if and only if it is topologically simple.

Proof. 1f L is topologically simple, then every non-trivial ideal of L is
dense in L; hence by Proposition 4.2 there are no non-trivial ideals in L.

4.3. Definition 4.3. Let L be a Lie algebra over a field 4. We will de-
note by 4, the set of 4-linear mappings of L into L which commute with all
of the mappings ad(x): L —L, x e L. 4, will be called the commutator set
of L.

If we take the sum of two mappings belonging to 4, or take their composi-
tion, then the resulting mapping belongs to 4 ; therefore 4, has the structure
of an associative ring. If a is an element of the base field 4, then the mapping
of L onto L defined by x — ax belongs to 4,. Hence there is an injection
4—4;.

There is a very simple criterion for 4, to be a commutative ring, namely
the following :

Lemma 4.3. If[L, L] = L, then 4, is a commutative ring,

Proof. Let p and p, be elements of 4;. Applying p,e, to an element in L
of the form [x, y] we get

eolx, Y1 = [oux, py] = ppdx, ¥1.

Hence p, and g, commute on [L, L], and if [L, L] = L, then 4, is a com-
mutative ring. g.e.d.
In the next two sections we will make extensive use of the following pro-
position which is an infinite dimensional version of a special case of Schur’s
lemma.
Proposition 4.4. Let L belong to &,, and be non-abelian and simple.
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Then 4, is a commutative field, which can be obtained from 4 by a finite al-
gebraic extension.

Proof. If L is finite dimensional over 4, then Proposition 4.4 follows
from Lemma 4.3 and the usual form of Schur’s lemma. To prove the Proposi-
tion when L is infinite dimensional over 4 we imitate the standard prcof of
Schur’s lemma. Let p be an element of 4,. Both the kernel and image of the
mapping p are ideals of L. Hence either p is the zero mapping or g is bijec-
tive and has a two-sided inverse which also belongs to 4. Therefore 4, is a
division ring. Since L is simple and non-abelian, [L, L] = L. Thus, by Lem-
ma 4.3, 4; is a field. Let {F?} be an admissible filtration of L. By Lemma
4.2, there exists an integer k, such that F* = [L, F¥***] for k > k,. If pis an
element of 4;, then pF* = [pL, F**'] = [L, F*+**] = F*. Therefore, 4, has a
representation as a ring of endomorphisms of L/F*. This representation is
faithful, since 4, is a division ring and is faithful on 4. Since L/F* is finite
dimensional over 4, standard theorems in linear algebra imply that 4, is a
finite algebraic extension of 4. q.e.d.

We conclude this sub-section with a few remarks about simple Lie algebras
belonging to & ,, when 4 is of characteristic zero and algebraically closed. It
was conjectured by Sophus Lie that these algebras consist of the finite dimen-
sional simple Lie algebras plus four families of infinite dimensional algebras,
which correspond roughly to the set of all diffeomorphisms of # space, the
set of all volume preserving diffeomorphisms of n space, the set of all sim-
plectic diffeomorphisms of 2n space, and the set of all conctact transforma-
tions on 2r + 1 space. The validity of Lie’s conjecture was proved by Eli
Cartan [2], but there were certain gaps in Cartan’s proof which were recently
filled in by Quillen, Sternberg and the author in [5].

If 4 is pot algebraically closed or of characteristic zero, not much is known
about the simple algebras belonging to %,. In the case where 4 = reals, a
list of simple Lie algebras containing all known examples can be found in
[14].

5. Some applications of Schur’s lemma

5.1. Let L be a simple non-abelian Lie algebra belonging to &, and 4,
the commutator set of L. By Proposition 4.4, 4; is a commutative field which
can be obtained from 4 by a finite algebraijc extension.

Let W be a finite dimensional vector space over 4, and consider the tensor
product?

LOW.

4

1 For reasons which will be clear below we will start indicating tensor products with
respect to 4 by putting a subscript 4 below the tensor product sign.
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There is a natural representation of L on this space, namely the tensor pro-
duct of the adjoint representation with the trivial representation of L on W.
We will denote this representation by y. If a is an element of L, and b ® w
is an element of L @ W, then y(a)(d ® w) = [a, b] ® w. For certain applica-
tions we have in mind in §§ 6~7, we will need to determine all invariant sub-
spaces of L @ W with respect to this representation.

4

We first point out that there is a standard way to manufacture out of W a
vector space over the field 4, : we just take the tensor product 4, ® W, and
4

4;, obviously acts on this on the right. When we speak below of subspaces of
4, @ W we will mean “4,” or ““4,-invariant” subspaces.
4

Since L is a module over 4, there is a natural 4-linear mapping
(5.1 L®4,—L.
If we tensor the right hand side of (5.1) by W, then we get a mapping
/\:LC?(AL®W) ~>LC2<)WT

Let D be an invariant subspace of L & W with respect to the representation

4
7. We associate with D a subspace Uy of 4, ® W as follows:
ueUDc:;\a/(@\ueD, VacL.

Our main result is the following:
Proposition 5.1. D=LQ®U,.

4z
Proof. Let us introduce the following terminology. We will say that a
subspace V of W is minimal, if D N (L ® V) = {0} and no proper subspace
4

of V has this property. To prove Proposition 5.1. we will first prove
Lemma 5.1. If V is a minimal subspace of W, then DN (LQ V) C
4

L®U,.
EA
Proof. Letaw,, ---, w; be a basis of V. Then every elementof D N (L ® V)
4

can be written in the form
(5-2) a1®w1+"‘+ak®a)k:

where a;eL,i=1,.--, k. The space D N (L ® V) is invariant with respect
4

to r; hence forallae L
[a:a1]®a)1+ e+ [a:ak]®a)k

is in this space providing (5.2) is in this space. This shows that the set of all
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coefficients of w, occuring in (5.2) forms an ideal of L. Since L is simple and
this ideal is non-zero, every element of L must occur as a coefficient of o, in
(5.2). Moreover, by the minimality of V, every coefficient can occur just
once because if there were duplications we could get a non-zero element of
D involving fewer of the ’s by subtraction. In other words, the intersection
D N (L @ W) consists of

4

(5.3) a@w + g @@w+ - + o) Bawr, VgyelLl,

where g,, - - -, p, are certain linear mappings of L into L. Applying y(b) to a
typical expression of the above form we get

[b, Pi(a)] = Pi[a; bl

for all a, b in L. This proves that p, ¢ 4, for all i. Thus, if we set u = o, +
0 ® @, + - + pr ® oy, then we get

DNILRV)={a®u,acL},

which proves the lemma.

We will now conclude the prcof of Proposition 5.1. We will say that an
element « of D is a minimal element if it is contained in an intersection of
the form

Dﬂ(L@V),

where V7 is a minimal space. We will prove the proposition by showing that
every element of D can be written as the sum of minimal elements. We as-
sume this statement is false, and argue by contradicticn. Let « be an element
of D which is not the sume of minimal elements. Then o will be of the form

5.4 ca=aQ@w,+ -+ +a,Bw,, aelL, weW.

We can always assume « chosen to involve as few of the w’s as possible.
Since « is non-zero the subspace of W spanned by w,, -- -, @, contains a
minimal subspace V. Moreover in this subspace we can always find an ele-
ment of the form

Qe+ Qw4+ - +a,Qa;

(with a, as above and the other a”’s possibly different). Subtracting this ex-
pression from (5.4) we get an element which is nct the sum of minimal ele-
ments and involves fewer of the »’s. This contradiction proves the proposition.

Corollary. Let D be an invariant subspace of L @ W with respect to the

representation y. Then y(L)D = D.
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Proof. [L,L] = L; therefore y(L)D = y(L)YLQ Up) =[L,L1Q U, =
LQU,=D. . .

L

5.2. In this sub-section we will prove a generalization of Schur’s lemma
which will be needed in §7.

Let 4 be a field, and F the ring of formal power series A[[x;, - - -, x,]] in n
indeterminants over 4. Let L be a simple Lie algebra belonging to % ,, whose
commutator field 4 is equal to 4. The ring F with its Krull topology is line-
arly compact; hence the tensor product L é F is defined. The ordinary tensor
preduct L ® F has the structure of a Lie algebra, and we leave it as an

A
exercise to verify that there is a unique Lie algebra structure on L & F such
that the bracket operation is continuous and such that the mapping

LOF LQF

N
is a Lie algebra homomorphism. A corollary of this remark is that L & F be-
longs to & ,.
A
Proposition 5.2. The ring of commutators of LQF, i.e. dygy, is iso-

morphic to F.
Proof. For every multi-index a, - - -, an, @; a ncn-negative integer, we
will denote by x* the monomial x;* - - - x;® in the indeterminates x;, - - -, X,.

A
Let p be an element of 4,4, We will regard L as imbedded in L ® F and
look at p! L. If A e L, then we can write

o(4) = z 0 (DX,  pfd)eL,

where p, depends linearly on 4. If we bracket this expression by an element
B of L, then we get [p,(4), Bl = p,[A4, Bl for all 4, Bin L (i.e. p, € 4), since
olA, Bl = [p(A4), B]. Hence we can write

od) = AR Y p,X* forall AcL.
a=0

Thus p|L is just multiplication by the formal power series 3, g, X*. By

Lemma 6.2, [L, L ® Fl=1L (Q) F. Hence, if p € 4,4p, it is determined com-
pletely by its restriction to L. This completes the proof.

5.3. Let M be any Lie algebra, and Der(M) the Lie algebra of its deriva-
tions. There is a natural representation of Der(M) on the commutator ring
Ay of M defined as follows. If X ¢ Der(M) and p ¢ 4y, then

Xop—poX

is a mapping of M into M, which commutes with Lie brackets and hence
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belongs to 4,,. We will denote this element of 4, by &£ yp. One easily verifies
the following identities :

gxplpz = (gxm){?z + PngPz 5
v(fxg}'{?- .,(fy,?xp: g[x,Y}P:

which show that the mapping X — &, is a homomorphism of the ring
Der(M) into the ring Der(4y). The kernel of this homomorphisms consists of
all “Ay-linear” derivations of M.

We will apply these general remarks to the above situation. Since F is the

commutator ring of L (/>\§ F there is a natural homomorphism:
(5.5) 7: Dex(L ® F) — Dex(F) .

- . . . A -
Every derivation of F, however, induces a derivation on L & F; so there is a
homomorphism the other way

I: Der(F) — Der(L & F) .

1t is easy to verify that x o [ = identity, which implies that (5.5) is surjective.

The kernel of (5.5) consists of all F-linear derivations of L @F . Such a de-
rivation is determined completely by its restriction to L; hence we can de-
scribe the kernel of (5.5) as being the set of all mappings

A
a:L-LQF
satisfying the identity
alX, Y] = [X, a(¥)] + [a(X), Y]

for all X,Y eL. We will denote this set by Der(L)@)F. (We define

A
Der(L) @ F in this way since we have not defined a topology on Der(L).)
We summarize the above remarks:
Proposition 5.3. There is a split exact sequence of Lie algebras:

(5.6) 0 — Der(L) & F — Der(L & F) = Der(F) — 0.

4

6. A Jordan-Hélder decomposition

6.1. The following example shows that it is impossible to get a strict
Jordan-Holder decomposition for the type of Lie algebras we have been con-
sidering.
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Let X,, - .-, X, be indeterminants, and F the ring of formal power series
in X,, - - -, X, with coefficients in 4. Let F* be the subspace of F consisting
of power series whose leading terms are of degree > k. Let L be the set of

0
: + + ¢ 3.
an abelian Lie algebra and F is an L module; so we can form the semidirect
abelian extension L # F in the category of Lie algebras. As a vector space
over 4, this is just the product of L and F, which can be given the structure
of a linearly compact topological space in an obvious way, using the given
filtration on F. The bracket operation will be continuous in this topology; so
L § F belongs to the family .%,. We claim there are no ideals of L contained
in F*'; in fact, every formal power series, if differentiated sufficiently often,
will have a leading term of degree zero. Therefore, L  F has no small ideals.
Let F, denote the set of all polynomials in X,, - -+, X, of degree < k. This
set is stable with respect to L; so I, = L £ F,, is an ideal in L § F. Since [, is
finite dimensional, it is closed, and I, is properly contained in [,,,; therefore
the ascending chain condition is violated. To say that L § F has a Jordan-
Holder decomposition in the usual sense of the term means it is possible to
find a finite chain of closed ideals, each member of the chain containing the
preceding member, so that no closed ideal is strictly contained between any
two members of the chain. However, this would imply that L § F satisfy both
chain conditions on closed ideals, and, as we have seen, the a.c.c. is violated.
We note that L £ F does have a finite chain of closed ideals such that every
quotient is abelian. In fact, the following sequence of Lie algebras

,c,ed,i=1,-.-,n L is

derivations of the form: ¢,

0—F-L#F L0

is exact, and both end terms are abelian. We will see that we can get a de-
composition, analogous to the classical Jordan-Hélder decomposition, for Lie
algebras with no small ideals, provided we allow abelian quotients of the type
above which are not, strictly speaking, simple.

6.2. The following proposition is a kind of weak substitute for the a.c.c.
on closed ideals.

Proposition 6.1. Let L be a Lie algebra belonging to & ,. Then there ex-
ists a proper closed ideal I of L which is strictly maximal in the sense that
there are no ideals of L lying properly beitween L and I.

Proof. Among the open subalgebras of L not identical with L itself pick
a maximal one, say M. Let I, be the largest ideal of L contained in M. Since
M is closed, I is closed. Let L’ = L/I,, and let M’ be the image of M in
L’. M’ is a fundamental algebra of L’ by construction, and there are no sub-
algebras of L’ lying strictly between L’ and M’; hence L’ is primitive. If L’
is simple we are done. Otherwise L’ admits a closed ideal of finite codimen-
sion, which is proper by Proposition 5.1. Let I’ be a maximal proper closed
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ideal of finite codimension in Z’. Then L’/I’ is simple; hence if [ is the pre-
image of I’ in L, L/I is simple. g.e.d.

For applications of Proposition 6.1 we will need some topological lemmas :

Lemma 6.1. Let L be a Lie algebra belonging to % ,, I a closed ideal of
L, and § an open subspace of I with respect to the relative topology. Then
the normalizer of S is open in L.

Proof. By the normalizer we mean the set of x € L such that [x, §] C S.
This set is clearly closed; therefore, to show that it is open we have to show
that it is of finite codimension. Since S is open in I, § is of the form I N @
where @ is an open subspace of L. Let A be an open subalgebra of L con-
tained in @. It is clear that [4,I] C I and [4,I N A] C I N A; hence there
is a morphism of algebras:

A—End,(I/IN A).

The kernel of this mapping is of finite codimension in 4 and is obviously
contained in the normalizer of S.

Lemma 6.2. Let L be a Lie algebra, A be a subalgebra of L, D;A =
{Xe A, L, X]e A}, and N be the normalizer of A. Then N is contained in
the normalizer of D A.

Proof. LetXeN,YeD;A4 and Ze L. Then

Z, X, Y1 =1IZ, X], Y] + [X, [Z, Y]]

by Jacobi’s identity. The first term on the right is in 4 since Y is in D A,
and the second term is in A since [Z, Y] isin 4 and X is in the normalizer
of A. Hence the sum is in 4. Since Z was arbitrary this provas that [X, Y1 is
in D, A. ' '

Proposition 6.2. Let L be a Lie algebra belonging to ¥,, I a closed
ideal of L, and J a closed maximal ideal of I. Then the normalizer of J in L
is open. )

Proof. Let § be a proper open subalgebra of I/J, § its preimage in I,
and I the union of all ideals of I contained in S. It is clear that I itself is a
closed ideal of I, and equals J since it contains J and is unequal to I. There-

fore we can represent J as the infinite intersection N D%S. Applying Lemma
k=0

6.2 inductively we sge that the normalizer of § is contained in the normalizzr
of J. Thus, by Lemma 6.1 the normalizer of J is open in L.

6.3. We will consider the following situation: L belongs to &,. I is a
closed ideal of L. J is a closed maximal ideal of I, and I~ is the largest ideal
of L contained in J.

The closure of I~ is a closed ideal of L and is contained in J; since J is
closed, so I° must be closed. We will show that if I/J is non-abelian, there
are no closed ideals of L contained between I and I*. The proof of this fact
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will involve several steps. We will first define a filtration on I and prove a
comparable theorem for the graded algebra associated with this filtration, and
then use this result to prove the original theorem.

We define a filtration on [ as follows: we set I° = I, I' = J and, by induc-
tion, I* = D, I** for k¥ > 1. The intersection ﬁ I* is the largest ideal of L

k=0
contained in J, by Proposition 2.4; so this intersection is equal to I=. It is
easy to see, by repeated application of Proposition 2.3, that [I*, I!] < I*¥*¢;
therefore, {I*}, k=0, 1,2, ..., is a filtration of / in the sense of Definition
3.1 (except that condition b) is not satisfied). Let .# be the graded algebra
associated with this filtration :

S = 3 I
k=0

We will show that .#, in addition to bzing an algebra, is a module over a
ring of polynomials. To show this, let N be the normalizer of J in L, and W
the finite dimensional abelian Lie algebra over 4, whose underlying vector
space is L/N. Since I* is equal to D¥*J, [N, I¥] — I* by Lemma 6.2. Hence
the mapping L x I — I factors through N to give a mapping:

(6.1 LINX Iy fliee =1/ 1in for all £,
or, summing on X, a mapping:
(6.1) WxJS—S..

If w, and w, are elements of W, and x and y are representatives for w, and
w, in L, then, for all elements « ¢ I*, the brackets [x, [y, «]] and [y, [x, «]]
are in I*~2, and, by Jacobi’s identity, their difference is in I*~'. So if we pass
to quotients, the mappings that are induced on .# by w, and w,, using (6.1),
cummute with each other. This shows that (6.1) is a representation of the
Lie algebra W on .#. This representation extends to a representation of the
universal enveloping algebra of W, which is just the symmetric algebra S(¥).
So we have demonstrated: .# is an S(¥) module in a canonical way.

Let #* be the 4-th graded term in the module .#, and S* the I-th graded
term in the ring S(W). If a ¢ #* and p ¢ §¢, then pa e #*-t. Since #° =[],
the pairing of .#* with S* gives a mapping:

J*% — Hom, (S, I/T) .
By summing this mapping over & we get 2 morphism of S(¥) modules:
6.2) # — Hom,(S(W), I/J) .

We will show that (6.2) is injective. Suppose by induction that the injectivity
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has been proved up to degree £ — 1. If the mapping fails to be injective in
degree k, then there exists an ae #* such that for all we W, wa=0 in
Fx-1 If « is a representative for a in I*, then [L, «] C I* or ¢ € D I*. By
definition, I*** = D I*; therefore a = 0 and (6.2) is injective in degree %.
Thus we have proved

Lemma 6.3. There is an injective morphism of S(W) modules:

6.2y # — Hom, (S(W), I/]) .

Let W* be the vector space dual of W. Using the fact that S(W)* = S(W*),
we will write the second term in the sequence (6.2) as I/J ® S(W*). Since
I/7 is a Lie algebra, and S(W*) is a graded associative commutative algebra,
their tensor product is a Lie algebra.

Proposition 6.3. The mapping
(6.3) I =1/ Q S(W*)

obtained from (6.2) is a morphism of graded Lie algebras.

Proof. The module structure of .# is compatible with its structure as a
Lie algebra; so to prove that (6.3) is a morphism of Lie algebras we only
have to show this in degree zero. But, in degree zero, (6.3) is just the identity
mapping.

6.4. We will now assume that I/J is non-abelian. We will prove

Proposition 6.4. If A is a proper closed ideal of I containing I=, then A
is contained in J.

Proof. The Lie algebra I/J = #° is simple and non-abelian by hypothe-
sis; therefore, [.#°, #*¥] = #* by Proposition 6.3 and the corollary to Pro-
position 5.1. This implies the following identity in the filtered algebra:

6.4) I8t = [I, I*1] 4 I* .

Suppose now that A is not contained in J. Then we get 4 + J = I, since J
is maximal. We will prove by induction that 4 + I* = I. We have just proved
this for the case where £ = 1. Assume it has been proved for the case &k — 1,
i.e. assume that 4 + I*~' = [. Combining this with (6.4) we get

I=A+TI* = A 4 [I, I* '] 4 I* .

Replacing the term I which occurs in brackets on the right by 4 + I', we get
I = A + I* as claimed. This establishes the induction.

The intersection ﬁ A+ I* is equal to A, since A is closed and contains
k=0

I*; so, by what we have just proved, 4 = I, which contradicts the assump-
tion that A is proper.
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Corollary. There are no closed ideals of L strictly contained between I
and I~

Proof. Let A be an ideal of L strictly contained in I and containing I=.
Since A is an ideal of L it is, a fortiori, an ideal of I; hence it is contained
in J. However, the largest ideal of L contained in J is I*; so A = I=. q.e.d.

If we combine the corollary to Proposition 6.4 with the descending chain
condition on closed ideals we get the following Jordan-Holder decomposi-
tion :

Theorem 6.1. Suppose the Lie algebra L belongs to &, and satisfies the
descending chain condition on closed ideals. Then there exists a sequence

L=I,>5I5L,>--- 2I,={0}

of closed ideals of L such that for each 0 < i < k one of the following two
alternatives holds:

a) I,/I,,, is non-abelian, and there are no closed ideals of L properly
contained between I, and I,,,.

b) I,/I,,, is abelian.

Moreover, suppose two chain decompositions of L are given, for which the
above conditions are satisfied. Let Q,, - - -, Q, be the set of non-abelian quo-
tients occuring in the first decomposition, counted with multiplicities, and let
01, - -+, O be the set of non-abelian quotients occuring in the second decom-
position. Then r = s, and the Qs and Q}’s are pairwise isomorphic as mo-
dules over L.

Proof. We will first prove that such a decomposition exists. Let I, be a
maximal closed ideal of L, and J a maximal closed ideal of I,. If 1/J is
abelian, let I, be the closure of [1,, 1,]. This is contained in J; therefore, it is
properly contained in I,. If I/J is non-abelian, we let I, be the largest ideal of
L contained in J. By the corollary to Proposition 6.4, there are no closed
ideals of L contained between I, and I,. Now we repeat the argument we
have just given with I, replaced by I,. We can construct by induction a sequ-
ence of closed ideals each ideal in the sequence being properly contained in
the preceding one, so that the conclusions of the theorem are satisfied. By the
d.c.c. this sequence must terminate at {0} after a finite number of terms.

Suppose now that I, > I, > --- DI, and I[; DI} 5 --- DI, are two chain
decompositions satisfying the conditions of Theorem 6.2. Let O,, @,, - - -, O,
r<m and Qf, ---, Q% s<n, be the non-abelian quotients which occur,
counted with multiplicity. For every i between 1 and r there exists a ¢ between
0 and m such that Q; = I,/1,,,. Consider the expression: I, NI}, + I,,,, for
each u# between O and »n. This is an ideal lying between I, and I,,,, and it is
closed by Proposition 1.2, Corollary 2. Hence it must be equal to either I, or
I,.,.If u=0, then I/, = L and it is equal to I,, while if ¥ = n, then I, = {0}
and it is equal to I,,,. Therefore, there exists a unique integer v, 0 < v < n,
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suchthatI, NI+ I,,, =1, and I, N I, + I,., = I,,,. This implies that the
following mapping of L modules:

Lnr 1,

* +
() LNE, I,

?

is surjective. On the other hand there is an injective mapping of L modules

LNr r

v

E 23 —> .
G NI, L.,

The quotient, I;/I%,,, can not be abelian, because this would force 1,/1,., to
be abelian; so this quotient is simple, and (xx) is bijective. From ( %) it fol-
lows that 1,/1,,, and I//I/ , are isomorphic as L modules.

By the above procedure we get an explicit mapping of the set of Q’s into
the set of @”’s such that each O gets mapped onto an isomorphic Q. How-
ever the same construction can be applied to the Q’’s to get a mapping in the
opposite direction. We let the reader verify that these mappings are inverses
of each other.

7. Structure of the non-abelian minimal closed ideals

7.1. We want to find out what kinds of algebras can occur as quotients
of type a) in the Jordan-Hélder decomposition of § 6. We will actually look
at a more general question: What kinds of algebras can occur as non-abelian
minimal closed ideals of algebras L which belong to %,? We will assume
throughout this § 7 that the base field 4 is of characteristic zero.

Let I be a non-abelian minimal closed ideal of L, and J a maximal closed
ideal of I. We will show J is unique.

Proposition 7.1. Every closed ideal of I except I itself is contained in J.

Proof. This proposition follows from Proposition 6.4 provided I/J is non-
abelian. If 1/J were abelian, then [I, I] would be contained in J, and its
closure would also be contained in J, Since I is minimal, we would have to
have [, I] = 0, which would contradict the hypothesis of non-abelian 1.

Let R denote the quotient I/J. We will study the relation between I and
R. Our starting point is the filtration I* = D¥-'J, k =0, 1, 2, . . -, which we
discussed in § 6. We will continue to use the notations which we used before;
in particular, we will denote by .# the graded Lie algebra

5 e
k=0

and by W the quotient of L by the normalizer of J. We will let 4, be the
commutator ring of the algebra R (cf. § 4.3). Since R is simple, 4 is a field,
in fact, a finite algebraic extension of the base field 4.
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By Proposition 6.3 there is an injective morphism of graded Lie algebras:
(7.1 £ - R®S(W*) .

This mapping sends .#* onto a subspace of R @ W* which is invariant with

respect to the adjoint action of R. Therefore, by Proposition 5.1, there exists

a 4z invariant subspace U of W* & 45 such that the image of .#! is equal to
4

R ® U. Let S(U) be the ring of polynomials over U regarded as an algebra
4R

over the field 45.

Proposition 7.2. The mapping (7.1) maps £ isomorphically onto
R ® S(U).

p: |

R
Proof. By Proposition 5.1, the image of .# is of the form R ® S,, where
4p
S, is a graded subspace of S(W*) ® 4. Since [R, R] = R, this graded sub-
4

space is a graded subalgebra; therefore, S¥ © S¥(I/). We will prove by induc-
tion that these two spaces are equal.

The ring S(W*) ® 4 is 2 module over the ring S(W); in fact it is isomor-
phic to the S(W) module Hom,(S(W), 4z).

Proposition 6 implies that S, is a submodule. Let u,, - - -, u, be a basis for
U over dg, and v, - - -, v, the dual basis for U*. Since U* c W & 45, each
v; induces a mapping D, of S(W*) ® 4z into itself. S, is stable with respect
to this mapping, and is also so with respect to multiplication by u; since it is
an algebra and contains U.

We will prove by induction that S¥ = S®U). This is true for k =1 by
hypothesis. Suppose it has been established for £ — 1. If p is in S¥ we can
write

p= L >, ufD,,p)
k i=1

by Euler’s identity. Since D,,p is in §#-(U), p is in S*(U).

7.2. A rough statement of the theorem we want to prove is that [ is iso-
morphic to its graded algebra. We will make this statement a little more
precise:

Let F be the ring of formal power series over the vector space U, and F*
the set of formal power series whose leading terms are of degree > i. The
filtration {F?} defines a topology on F with respect to which F is linearly com-
pact. R is also linearly compact; therefore, the tensor product R (A§ F is de-

R
fined. Since R is a Lie algebra and F is an associative commutative algebra,
their ordinary tensor product is a Lie algebra. One can easily see that there

is a unique Lie algebra structure on R é F such that the natural mapping
4p
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R®F >R ® F is a homomorphism and R ® F belongs to & ,. Our main
4q g 4R
result is

Theorem 7.1. I and R (/>\§ F are isomorphic as Lie algebras over A.
AR

For the sake of brevity we will only prove a special case of Theorem 7.1,
namely the case where 4 = 4. If we assume this, we can drop the unwieldy
notation involved in distinguishing between 4 linearity and 4 linearity; in
particular we can drop the subscripts when writing tensor products. The proof
of Theorem 7.1 is basically the same without this assumption except for a few
small details which the reader will have no trouble filling in. For the rest of
this sub-section we will assume 4 = Ajz.

It will be convenient to prove Theorem 7.1 as a corollary of a slightly
stronger result. Before we state this result, we will make a few preliminary

remarks: Let Der(R @9 F) be the Lie algebra of derivations of R A® F. There
is a natural homomorphism R @F — Der(R (/;D F), which is injective since
the center of R (;\9 F is trivial; therefore, we can think of R (;\9 F as a sub-
algebra of Der(R (;\DF). If I were isomorphic to R @F , this isomorphism

would induce a homomorphism L — Der(R A® F), since L acts as an algebra
of derivations on I. The technique of our proof will be to construct an iso-

morphism of I onto R (QDF and a2 homomorphism of L into Der(R &)F)
simultaneously.

The algebra R @F has a canonical filtration, given by its subalgebras

R (>A§ Fi, i=0,1,2,.-.. The corresponding graded algebra is R &® S(U),
which by Proposition 7.2 is isomorphic to the graded algebra .. We will
prove

Theorem 7.2. There is a homomorphism ¢ mapping the pair of Lie alge-

bras L, I into Der(R @D P, R (A>D F and satisfying the following conditions :

a) The restriction of ¢ to I maps I into R @F so as to preserve the filtra-
tions.

b) The map gr(¢): F — R ® S(U) induced by ¢ is the isomorphism of
Proposition 7.2.

Remark. Theorem 7.2 implies Theorem 7.1 since ¢|I is bijective if con-
dition b) is satisfied.

To understand what is involved in proving Theorem 7.2 we will examine a
few of its implications. We recall that in § 5.3 we constructed the following
split exact sequence of Lie algebras:

0 — Der(R) ® F — Der(R & F) = Der(F) — 0 .
4



340 VICTOR GUILLEMIN

Suppose that ¢: L — Der(R é(\) F) is a mapping which satisfies the conditions
of Theorem 7.2. Then 2 = x o ¢ is a homomorphism of L into Der(F). Let ¢
be the mapping ¢ —lomwo¢. Since oz =0, ¢ is a mapping of L into

Der(R) ® F.

Given X ¢ L let us denote by %, the derivation induced on Der(R) é\() F
by the derivation 2(X) of the ring F. Then ¢ has to satisfy the following
identity :

(7.2) Zx1(Y) — Lyr(X) = (1X, Y] — [z(X), z(Y)],

for all X and Y in L.
Conversely given a homomorphism 2: L — Der(F) and a mapping r: L —

Der(R) é\() F satisfying the identity (7.2) then the mapping ¢ = + lo2isa

homomorphism of L into Der(R @ F). Our strategy for proving Theorem 7.2
is to construct first the mapping 2, and then to solve equation (7.2) for r.
7.3. To conmstruct a mapping r satisfying the identity (7.2) we will need
some facts about the Spencer-Kozul complex of the polynomial ring S(U) (cf.
[3]). We recall briefly how this complex is defined.
An element w of U* is by definition a linear mapping of U into 4. It ex-
tends in a natural way to a derivation

D,:SU) — SWU)

of degree — 1. Let u, - - -, u, be a basis of U, and w,, - - -, w, a basis of U*.
We define a mapping

e: SHU) —» S () ®U

by the formula ¢(r) = f Dyr® u,.

Let A' = AYU) be the space of alternating /-forms over U. There is a
canonical “wedge” mapping U ® A — A'*'. We will denote by § the mapping
obtained by composing the two mappings in the sequence:

S ® A B4 SWU) QU@ A %55 S(U) ® A+t .

It is easy to verify that § o« § = 0. So the vector space S(U) ® A equipped with
& is a complex, which is bigraded since both § and A are graded; § is a
boundary operator of bidegree (—1, 1). We will show that it is an acyclic
complex by constructing an explicit homotopy operator.
If @ ¢ §*® A is of the form a ® u;, A\ --- A uy,, then we will set
R —1)u;a U, U; PR U; .
Do = k++ z? Deuga @ ug, A VA ZAN N Uz,
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Since every element of S ® A can be uniquely expressed as a linear combina-
tion of elements of this form, D is unambiguously defined for all of S ® 4,
except in bidegree (0, 0) when the term in the denominator is zero. One easily
verifies the identity D§ + D§ = I, from which one can conclude

Lemma 7.1. The cohomology of the complex {S ® A, 8} is zero except in
bidegree (0, 0).

In the examples considered below we will be considering complexes of the
form {(V®S&® 4, §,}, where V is a vector space and 4, is i, ® 4, i, being
just the identity map on V.

The acyclicity of these complexes can be proved in the same way as above.

7.4. Before we return to the proof of Theorem 7.2, we will discuss the
structure of Der(F) in a little more detail. We pointed out in §7.3 that an
element w of U* induces a derivation D,, on S(U); it also induces a deriva-
tion D,, on F, since F is the ring of formal power series over U. Let w,, - - -,
w, be a basis of U*. It is not hard to show that every derivation of F is of
the form

iftii, fiGF, i:l’-..’n_
t=1

The set of all derivations of the above form with f; e F*, i =1, ..., n, forms
a subalgebra of Der F, called the isotropy algebra to be denoted by DerF.
The quotient of Der F by Der’F can be identified with U* (as a vector space).

The first step in the proof of Theorem 7.2 is the following lemma which
was proved by Sternberg and the author in [3].

Lemma 7.2. Let L be a Lie algebra belonging to % ,, N be an open sub-
algebra of L, U = (L/N)*, and F be the ring of formal power series over U.
Then there exists a homomorphism

2: L, N — Der F, Der’F
such that the mapping
L/N — Der/Der’ = U* = L/N,

induced by 2, is the identity mapping. Moreover, given two homomorphisms
2, and A, satisfying the above conditions, there exists an automorphism p of
F such that 3, = p4A,, where p, is the automorphism of Der F induced by p.

For the proof of Lemma 7.2 see [3] and [14].

Remark. If 2 satisfies the hypotheses of Lemma 7.2, then the kernel of A
is the largest ideal of L contained in NV (since Der'F is a fundamental sub-
algebra of Der F). In particular if 7 is an ideal of L contained in N, then 2
maps it into zero.

7.5. Let J be the unique maximal closed ideal of I, and N its normalizer



342 VICTOR GUILLEMIN

in L. We claim that (L/N)* is isomorphic to U as a vector space.” By defini-
tion, U is a subspace of (L/N)*. Suppose that X € L is annihilated by U.
Then by Proposition 6.3 and Proposition 7.2, [X, J] < J; therefore X is in
N, which proves our assertion.

We can apply Lemma 7.2 of § 7.4 with L, N and U taken to be as above.
Let 2 be a homomorphism of L into Der F satisfying the conditions of Lemma
7.2. From 2 we will construct a mapping

z: L — Der(R) @ F

satisfying the identity (7.2); this will be done by an inductive procedure.
Given a mapping

te: L, I > DerR)®F, ROF,
we will say that it satisfies condition (7.2); if
Zxti(Y) — Lyiu(X) — (X, YD) — [2:(X), z:(Y)]

is in Der(R) & F* for all X, Y in L.
The main step in the induction is the following :
A A
Proposition 7.3. Let ¢,_, be a mapping of L, I into Der(R® F), RQF
satisfying condition (7.2),_,, k > 1. Then there exists a mapping ¢, of L, I

into Der(R ® F), R ® F such that:
a) < satisfies condition (7.2),.

b) 7u(X) — 7,_y(X) is in Der(R) ® F* for all X in L.
Proof. We assume the mapping z,_, is given. We will construct z, by
first constructing certain chains in the Spencer-Kozul complex :

Der(R) ® S(U) ® AU) .

We will show that these chains are cycles, and use the elements which they
bound to construct 7.

For the rest of the proof we will fix an injective linear mapping i: U* — L
such that the composition of i with the projection of L on L/N = U* is the
identity.

For every pair of elements u, v in U* we will define an element 7, , in
Der(R) ® S#-(U) by the following construction. Let X = i(x) and Y = i(v).
Consider the expression :

gXqu(Y) - eg91"l'k—1()() - Tk-1([X, Y]) - [Tk—1(X), Tk-1(Y)] ’

2 This is assuming that 4 = dg; see the remark in §7.2.
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which is an element of Der(R) @) F%~1 by hypothesis. We will define the ele-
ment 7, , to be the “leading term” of this element; that is, the projection of
this element on Der R ® (F*~!/F¥),

If we let u and v vary, then y,, is a linear expression in u and v, and
Tu,o = — Tv,u- Lherefore, the mapping u, ¥ — 7, , can be regarded as a linear
mapping of A*U* into Der R ® S*-%, or, alternatively, it can be regarded as
an element of Der R @ S*-* &® A*(U); call this element 2.

Next let 4 be a fixed element of N. For each u ¢ U* we will construct an
element 7, ,, of Der(R) ® S*~* by the same procedure as above. Let X = i(u).
We will define 7, ., to be the “leading term” of the expression

gxfk—].(A) - gAfk—l(X) - Tk-.l([X, A]) - [Tk-1(X), Tk_1(A)] s

which is an element of Der R ® F*~* by hypothesis. 7, . depends linearly on
u, and hence defines an element of Der R @ $*-! ® U which we will denote
by c.

Finally, given any pair of elements 4, B in N we will associate with them
an element ¢ » of Der(R) ® S*-1. By definition ¢ ; will be the “leading
term” of the expression

2L st1a(B) — & gri (A) — 1[4, B]) — [z 1(A4), 7 (B)]

Lemma 7.3. The elements ¢*, ¢, and ¢ » of the Spencer-Kozul complex
Der(R) ® S ® A are cycles (3¢* = ¢y = o¢% = 0).

Proof. We will just prove that §¢> = O, and leave the other two cases as
exercises for the reader. Let u, v, and w be elements of U*. If we think of
¢® as a mapping of A*U* into S®-(U), then its boundary is the expression

acq(u, v, w) = D,c(v, w) + Dyc(w, ) + Dyclu, v) .

We can compute this expression as follows: Let X = i(u), Y = i(v) and
Z = i(w). Then éc*(u, v, w) is the k — 2 component of the expression
Lx {nglc—l(Z) - nglc—-l()’) - Tk_1([X, Y])
+ [fk—l(X): z.k-l(Y')]} + .- ’
where the dots indicate cyclic permutations of the first term. We will prove

that the k¥ — 2 component of (7.3) is zero. Expanding the first two terms of
(7.3) and their cyclic permutations, we get

(7.3)

Lyl ytuil) — Ly Lyt (L) + ---
= ZLxyte-1(Z) + Ly, z7e1(X) + Lz xte-1(¥) .

Substituting this back into (7.3) we get
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g[X,Y]Tk—l(Z) - ngk—l([X, Y])
+ [Zxte(Y) — Lot (X)), 7 a(D] + - -
By the inductive hypothesis (7.2),_,, this expression is equal to
T (X, Y], Z]) — [0 0[X, Y], 26 a(D)] + - - -
+ [Tk_1[X, Y], Tk_1(Z)] - [[Tk_1(X), Tk_1(Y)], Tk-1(Z)] + -y

where the dots now indicate cyclic permutations of the first term plus terms
of order £ — 1. In this expression the middle terms cancel and the first and
last terms, if permuted cyclically, are zero by Jacobi’s identity. This proves
that (7.3) is of degree & — 1, and hence that §c* = 0. q.e.d.

If k is greater than 1, the condition ¢’ ; = O implies that ¢’ ; = O since
¢% s 1s of bidegree (X — 1, 0) and hence can not be the boundary of anything.
Since §c} = 3¢ = 0 we can find an element 5% in Der(R) ® $¥(U) and an
element b* in Der(R) ® S¥(U) @ A(U) snch that §b% = ¢ and §b* = 2. We
now define ¢, as follows. We regard Der(R) ® S* as a subspace of Der(R) ®
F*, (This identification can obviously be made in a canonical way.) We then
define 7, by the formulas:

a) if AeN, we set 7,(4) = 7,_(4) + b,

b) if X e L is of the form #(«) where u e U*, we set

7 X) = 7,,(X) + b'(w) .

Since the mapping i: U* — L was chosen to map U* onto a complement
of N in L, the formulas a) and b) define z, unambiguously for all elements of
L. The reader can check that the condition (7.3), is satisfied automatically
because of the way we defined ¢, and ¢%. Condition b) is satisfied because b*
and b% are both of degree k. This concludes the proof of Proposition 7.3.

g.e.d.

To set up the induction we note that since N is the normalizer of the max-

imal ideal J of I there is a canonical homomorphism

v: N — Der(R) .

We define a mapping z,: L — Der(R) é F in the following way :

a) If A eN we set z,(A4) = v(A4).

b) If X is of the form i(x) where u is in U*, we set z,(X) = 0.
The mapping z, is defined unambiguously for all elements of L by a) and b).
Given z, we now define z,, z,, - - - inductively using Proposition 7.3. We let
z be the limit of the z,. (This limit exists because of condition b) in the
hypotheses of Proposition 7.3.) It is clear that = satisfies condition (7.2), and

also that  maps I homomorphically into R (/\9 F. In fact if X and Y are in
#, then ¥y and ¥y are zero (cf. remark at the end of §7.4); hence, equa-
tion (7.2) becomes
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(X, Y]) = [«(X), «(Y)] .

To complete the proof of Theorem 7.2 we must show that - behaves as pre-
scribed on the graded structure. We note that if X is in L and Y is in I, then
£y = 0, and, therefore, equation (7.2) becomes

(7.5) &L xt(Y) = 2(IX, Y1) — [=(X), «(Y)] .
Let X = i(u) where u ¢ U*. The identity (7.5) implies that the mapping
gr(z): S > R®SWU)

commutes with the derivation D, for all u ¢ U* = L/N. However, we defined
7, so that this mapping would be the identity mapping in degree zero, and if
this mapping is to commute with the derivations D, it must be the identity
mapping in all degrees. Hence the proof of Theorem 7.2 is finished.
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